MIT researchers and their colleagues are designing an imaging system that can read closed books.

In the latest issue of Nature Communications, the researchers describe a prototype of the system, which they tested on a stack of papers, each with one letter printed on it. The system was able to correctly identify the letters on the top nine sheets.

“The Metropolitan Museum in New York showed a lot of interest in this, because they want to, for example, look into some antique books that they don’t even want to touch,”
[..]
The system uses terahertz radiation, the band of electromagnetic radiation between microwaves and infrared light, which has several advantages over other types of waves that can penetrate surfaces, such as X-rays or sound waves. Terahertz radiation has been widely researched for use in security screening, because different chemicals absorb different frequencies of terahertz radiation to different degrees, yielding a distinctive frequency signature for each. By the same token, terahertz frequency profiles can distinguish between ink and blank paper, in a way that X-rays can’t.

Terahertz radiation can also be emitted in such short bursts that the distance it has traveled can be gauged from the difference between its emission time and the time at which reflected radiation returns to a sensor. That gives it much better depth resolution than ultrasound.

The system exploits the fact that trapped between the pages of a book are tiny air pockets only about 20 micrometers deep. The difference in refractive index — the degree to which they bend light — between the air and the paper means that the boundary between the two will reflect terahertz radiation back to a detector.

Source: Judging a book through its cover | MIT News